

Savannah River Site Legacy Heavy Water Detritiation

Dave Babineau, Lucas Angelette, Cale Gustafson

Citizens Advisory Board

July 2025

Heavy Water

- Heavy water/deuterium is used in numerous applications
 - Pharmaceuticals
 - Semiconductors
 - Chemical Industry
 - Medical Imaging
 - Nuclear fission and fusion reactors
 - Nuclear weapons

www.isowater.com

- Heavy water can be electrolyzed to make deuterium gas
 - Easier to store and transport water than gas
- Bottom Line SRS Legacy Heavy Water has significant potential commercial value

Heavy Water

- Heavy water/deuterium is used in numerous applications
 - Pharmaceuticals
 - Semiconductors
 - Chemical Industry
 - Medical Imagining
 - Nuclear fission and fusion reactors
 - Nuclear weapons

www.isowater.com

- Heavy water can be electrolyzed to make deuterium gas
 - Easier to store and transport water than gas
- Bottom Line SRS Legacy Heavy Water has significant potential commercial value

Hydrogen Isotopes

 Isotope – atoms with the same number of protons but different numbers of neutrons

- Isotopes of the same element behave almost identical
- Hydrogen exists as three different isotopes
 - Protium regular hydrogen (1 proton, 1 electron)
 - Deuterium "heavy" hydrogen (1 proton, 1 neutron, 1 electron)
 - Tritium radioactive hydrogen (1 proton, 2 neutrons, 1 electron)
- Water can exist with all three hydrogen isotopes
 - Regular water is H₂O
 - Heavy water is D₂O
 - T₂O can exist, but will equilibrate with atmospheric humidity

Making Heavy Water

- Deuterium is naturally present in all water
 - Approximately 150 deuterium atoms for every 1 million hydrogen atoms
 - Termed as parts-per-million
- To concentrate the deuterium, the water is distilled
 - Heavy water and normal water have slightly different
 - boiling points
 - Normal water 212°F
 - Heavy water 214.5°F
 - Normal water evaporates faster
 - Heavy water concentrates in the liquid

Simple illustration of distillation

Making Heavy Water

• Distillation is based on boiling a liquid to separate out different components

stage

- Vapor concentrates the lighter component (hydrogen)
- Liquid concentrates the heavier component (deuterium)
- Water distillation occurs under vacuum
 - Between 1/10th to 1/3rd of atmospheric pressure 100°F 150°F
- Deuterium concentrates ~6% per stage
 - 150 parts-per-million → 159 parts-per-million in 1 stage
 - Need hundreds of stages
 - Going from 0.015% to 99.8%

Simplified illustration of a single distillation stage

Detritiation

- Heavy water used in nuclear reactors will make tritiated water
 - Tritiated water water with tritium (radioactive hydrogen)
 - Formed by absorbing neutrons from nuclear reactors

- In order for the heavy water to be reused, the tritium must be removed
 - SRS heavy water is between 0.2 1 Curies / kilogram (0.9 liter)
 - Typical medical imaging procedure utilizes Tc-99m, at 5 to 30 millicuries
 - Equal to 200,000 1,000,000 microCuries / kilogram
 - Virgin heavy water is 2 microCuries / kilogram
 - Factor of 500,000 reduction at 6% per distillation stage
 - Feed water will run through filtration system to remove residual radionuclides, solvents, particulates, and other "junk"

Technological Selection

- Water distillation
 - 95% volume reduction
 - Approximately 540,000 gallons
 27,000 gallons in storage
 - Approximately 400,000 gallons of heavy water, rest as light water
 - Tritium concentration increases 20x in tritiated effluent
- Water distillation with catalytic exchange and cryogenic distillation
 - Catalytic exchange catalyst promotes isotopic exchange between water and electrolyzed hydrogen
 - 100% volume treatment
 - 382,000 gallons of heavy water recovered
 - Tritium can be collected and used for scientific research (fusion, medical, etc.)
- Both options based on similar practices to be used in Canada and Romania

Water Distillation with Catalytic Exchange and Cryogenic Distillation – Full-Scale

- 300 vertical feet for primary detritiation column
 - Split between multiple columns in series
- 20 vertical feet to reach 99.8% isotopic purity
 - Must electrolyze that portion of water
 - Hydrogen isotopes can be distilled at ultralow temperatures
 - Will result in little to no liquid waste that requires disposition
- Can process entire Savannah River Site inventory in 10 years
- Water distillation alone can achieve separation if a lower budget is required
 - Will result in 27,000 gallons of heavy water with higher tritium content
 - Will need to grout or continue storing

Heavy Water Detritiation Plant – Notional Layout

Footprint on order of 10,000 square feet

Electrolyzers

Heavy Water Detritiation Demonstration Plant

- No current technology proven for reducing tritium content to the extent needed
 - Typically used to decrease tritium from 20 Curies/Liter to 1 Curie/Liter in heavy water reactors
 - Considered for light water detritiation to required levels, but not heavy water to date
 - Best option is water distillation, either with or without catalytic exchange and cryogenic distillation
- Demonstration needed to verify feasibility before pilot- or full-scale design and implementation
- Cost estimate developed for 1/80th scale demonstration plant
 - Equivalent to 300 grams/hour feed rate
 - 0.075 gallons (1.2 cups) per hour
 - 520 gallons per year

Demonstration Scale

- Department of Energy Office of Science Isotope Program requested demonstration scale system
 - Prove distillation can reduce tritium levels down to virgin heavy water
 - Within the established funding levels
- Demonstration scale system
 - 4 inch diameter column
 - 100 feet total length
 - Set of four columns 25 feet tall
 - Batch distillation
 - Production rate is 3.2% of feed rate
 - 300 grams per hour feed = 9.6 grams commercial D₂O produced
 - Smaller columns are less efficient, but can still prove the principle

Demonstration Scale

- Existing structures are expensive to renovate
- All scales going forward will be considered for external operation
 - Standard industrial practice (i.e. Canada and others)
 - Radiation Protection has evaluated external operations with no identified concerns
 - Environmental Protection identified secondary confinement mitigation needed for potential liquid migrating beyond process footprint (accident scenario)
 - Minimizes facility construction cost associated with process plant equipment
 - Reduces construction to control room structure/office
 - Electrical equipment can be built in weatherproof cabinets
 - Numerous concrete slabs exist from previously demolished facilities

Questions?

